

Q1. (A) Attempt ANY THREE OF THE FOLLOWING

01. Find k if the equations are consistent ky = x + 1; 2x - 3y + 5 = 0, 3x + 2y + 1 = 0SOLUTION x - ky = -1 2x - 3y = -5 3x + 2y = -1 are consistent Hence $\begin{vmatrix} 1 & -k & -1 \\ 2 & -3 & -5 \\ 3 & 2 & -1 \end{vmatrix} = 0$ Taking '-' common from C2 & C3 $\begin{vmatrix} + & - & + \\ 1 & k & 1 \\ 2 & 3 & 5 \\ 3 & -2 & 1 \end{vmatrix} = 0$ 1(3 + 10) - k(2 - 15) + 1(-4 - 9) = 0 13 + 13k - 13 = 0 13k = 0k = 0 (09)

Q-1A

02. If A.M. of two numbers exceeds their G.M. by 1 and their H.M. by $^{9}/_{5}$, find the numbers

SOLUTION

A - G = 1 : G = A - 1 (1) $A - H = \frac{9}{5} \therefore H = A - \frac{9}{5} \dots$ (2) $G^2 = AH$ $(A - 1)^2 = A(A - \frac{9}{5})$ $A^2 - 2A + 1 = \underline{A^2 - 9A}{5}$ $5A^2 - 10A + 5 = 5A^2 - 9A$ A = 5 SUBS IN (1) G = 5 - 1 = 4NOW; $A = 5 \qquad G = 4$ $\frac{a+b}{2} = 5 \qquad G^2 = 16$ $a+b = 10 \qquad ab = 16$ (3) Solving a(10 - a) = 16 $10a - a^2 = 16$ $a^2 - 10a + 16 = 0$ a = 8 , a = 2 b = 2, b = 8. The numbers are 2 & 8.

03. Find sum of
$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 2} + \frac{1^3 + 2^3 + 3^3}{1 + 2 + 3} + \dots$$

SOLUTION

n =
$$\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{1 + 2 + 3 + \dots + n}$$

 $\frac{n^2(n + 1)^2}{n^2}$

$$= \frac{4}{\frac{n(n+1)}{2}}$$

$$= \frac{n(n + 1)}{2}$$

n
=
$$\sum_{r=1}^{r(r+1)}$$

$$= \sum \frac{r^2 + r}{2}$$

$$= \frac{1}{2} \left(\sum r^2 + \sum r \right)$$

$$= \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)$$
$$= \frac{n(n+1)}{4} \left(\frac{2n+1}{3} + 1 \right)$$

$$= \frac{n(n+1)}{4}$$
 $\frac{2n+1+3}{3}$

$$= \frac{n(n + 1)(2n + 4)}{12}$$

$$= \frac{n(n + 1)(n + 2)}{6}$$

$\sqrt{2-2\sqrt{3}i}$ =	a + bi
2 – 2√3i =	(a + bi) ²
2 – 2√3i =	a^2 + 2abi + b^2i^2
2 – 2√3i =	a ² + 2abi – b ²
2 – 2√3i =	a ² – b ² + 2abi
$comparing a^2 - b^2 = 2$	(1) $\begin{vmatrix} 2ab &= -2\sqrt{3} \\ ab &= -\sqrt{3} \\ b &= -\sqrt{3} \end{vmatrix}$
subs in (1)	a
$a^2 - \left(\frac{-\sqrt{3}}{a}\right)^2$	= 2
$a^2 - \frac{3}{a^2} = 2$	
$\frac{a^4 - 3}{a^2} = 2$	
a ⁴ - 3 = 2a	2
a ⁴ - 2a ² - 3	= 0
(a ² – 3) (a ² +	1) = 0
$a^2 = 3$	
$a = \pm \sqrt{3}$	
NOW a = √3	$a = -\sqrt{3}$
$b = -\sqrt{3}$	$b = -\sqrt{3}$
a \/3	a /3
$\frac{-\sqrt{3}}{\sqrt{3}}$	$-\sqrt{3}$
= -1	= 1
HENCE	HENCE
$\sqrt{2 - 2\sqrt{3}i}$ = $\sqrt{3 - i}$	$\sqrt{2} - 2\sqrt{3}i$ = $-\sqrt{3} + i$
±(√3	– √i)

Q-1B

01. Prove without expanding as far as possible

 $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$

SOLUTION

	-a-b-c	0	2a
=	b+c+a	-p-c-a	2b
	0	c+a+b	c-a-b

Taking (a+b+c) common from R1 & R2 respectively .

		-1	0	2a
=	(a+b+c) ²	1	-1	2b
		0	1	c-a-p

Expanding the determinant

$$= (a + b + c)^{2} \left(-1(-c+a+b-2b) + 2a(1+0) \right)$$
$$= (a + b + c)^{2}(c - a - b + 2b + 2a)$$
$$= (a + b + c)^{2}(a + b + c)$$
$$= (a + b + c)^{3}$$

02. Prove without expansion

11	4	10		5	2	3
2	7	6	= 3	11	5	2
5	1	4		10	4	6

SOLUTION

LHS =
$$\begin{vmatrix} 11 & 4 & 10 \\ 2 & 7 & 6 \\ 5 & 1 & 4 \end{vmatrix}$$

R \leftrightarrow C
= $\begin{vmatrix} 11 & 2 & 5 \\ 4 & 7 & 1 \\ 10 & 6 & 4 \end{vmatrix}$
C₂ \leftrightarrow C₃
= $-\begin{vmatrix} 11 & 5 & 2 \\ 4 & 1 & 7 \\ 10 & 4 & 6 \end{vmatrix}$
R1 \leftrightarrow R2
= $+\begin{vmatrix} 4 & 1 & 7 \\ 11 & 5 & 2 \\ 4 & 1 & 7 \\ 10 & 4 & 6 \end{vmatrix}$
R1 \leftrightarrow R2
= $+\begin{vmatrix} 4 & 1 & 7 \\ 11 & 5 & 2 \\ 10 & 4 & 6 \end{vmatrix}$

Taking '3' common from R_1

		5	2	3		
=	3	11	5	2	=	RHS
		10	4	6		

Q-2A

01. find the equation of the line so that the line segment intercepted between the axes is divided by the point P(-5,4) internally in the ratio 1:2

SOLUTION

Let the line cut x – axis at A(a,0) and y – axis at B(0,b)

P divides AB internally in the ratio 1:2

-5 = 1(0) + 2	(a) 4 =	= 1(b) + 2(0)	Α	1	Р	2	В
] + 2	2	1 + 2	(a,0)		(-5,4)		(0,b)
-15 = 2a	12 =	= b					
a = -15/2	2 b =	= 12					
Equation of the line ;	$\frac{x}{a} + \frac{y}{b} =$	= 1					
	$-1\frac{x}{5/2} + \frac{y}{12}$	= 1					
	$-\frac{2x}{15} + \frac{y}{12}$	= 1					
	-24x + 15y	= 180					
	24x - 15y + 1	180 = 0					
	8x - 5y + 60	= 0					

02. Find points on the line y = x + 1 whose distance from 4x - 3y + 20 = 0 is 5 units

SOLUTION

Since (h,k) lies on y = x + 1 = 0, it must satisfy the equation

$$\therefore k = h + 1$$
 $h - k = -1 \dots (1)$

$$\frac{\text{STEP 2 :}}{d = 5}$$

$$\frac{4h - 3k + 20}{\sqrt{4^2 + 3^2}} = 5$$

$$\frac{4h - 3k + 20}{5} = \pm 5$$

$$4h - 3k + 20 = \pm 25$$

$$4h - 3k + 20 = 25 \qquad 4h - 3k + 20 = -25$$

$$4h - 3k = 5 \dots (2) \qquad 4h - 3k = -45 \dots (3)$$

$$\text{Solving (1) & (2)} \qquad \text{Solving (1) & (3)}$$

$$\text{Eq (1) x 4} \qquad 4h - 3k = -4 \qquad (3)$$

$$\text{Solving (1) & (2)} \qquad \text{Solving (1) & (3)}$$

$$\text{Eq (1) x 4} \qquad 4h - 3k = -45 \qquad (4h - 3k = -45 \qquad (4h - 3k = -45 \qquad (4h - 4k = -4) \qquad (4h - 3k = -41 \qquad (4h - 3k = -41 \qquad (4h - 4k = -4) \qquad (4h - 4k$$

03. Find the angle subtended by the line segment PQ at the origin where $P = (1,\sqrt{3}) \& Q = (\sqrt{3},1)$

SOLUTION

OP :
$$m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\sqrt{3} - 0}{1 - 0} = \sqrt{3}$$

OQ : $m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 0}{\sqrt{3} - 0} = \frac{1}{\sqrt{3}}$

let θ be the angle subtended by PQ at the origin (θ is the angle between the lines OP & OQ)

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$
$$= \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}}} \right|$$
$$= \left| \frac{3 - 1}{\frac{\sqrt{3}}{1 + 1}} \right|$$
$$= \frac{1}{\sqrt{3}}$$
$$\theta = 30^{\circ}$$

- (B) Attempt ANY TWO OF THE FOLLOWING
 - 01. find the acute angle θ satisfying : $4\sin^2\theta 2(\sqrt{3} + 1)\sin\theta + \sqrt{3} = 0$

SOLUTION

```
4\sin^{2}\theta - 2\sqrt{3}\sin\theta - 2\sin\theta + \sqrt{3} = 0
2\sin\theta(2\sin\theta - \sqrt{3}) - 1(2\sin\theta - \sqrt{3}) = 0
(2\sin\theta - 1)(2\sin\theta - \sqrt{3}) = 0
2\sin\theta - 1 = 0 \quad OR \quad 2\sin\theta - \sqrt{3} = 0
\sin\theta = \frac{1}{2} \qquad \sin\theta = \frac{\sqrt{3}}{2}
\theta = 30^{\circ} \qquad \theta = 60^{\circ}
```

(06)

Q-2B

02. Prove :
$$\frac{\csc(90 - A) \cdot \sin(180 - A) \cdot \cot(360 - A)}{\sec(180 + A) \cdot \tan(90 + A) \cdot \sin(-A)} = 1$$

SOLUTION

LHS

$$= \frac{\csc(90^{\circ} - A) \cdot \sin(180^{\circ} - A) \cdot \cot(360^{\circ} - A)}{\sec(180^{\circ} + A) \cdot \tan(90^{\circ} + A) \cdot \sin(-A)}$$

$$= \frac{\sec A \cdot \sin A \cdot (-\cot A)}{(-\sec A) \cdot (-\cot A) \cdot (-\sin A)}$$

$$= 1$$

$$= RHS$$

03. if sin A = $\frac{4}{5}$, $\frac{\pi}{2} < A < \pi$ and cos B = $\frac{5}{13}$, $\frac{3\pi}{2} < B < 2\pi$. find sin (A - B) SOLUTION

A lies in the II Quadrant	B lies in the IV Quadrant
:. sin A & cosec A are positive	∴ cos B & sec B are positive
$\sin A = \frac{4}{5}$	$\cos B = \frac{5}{13};$
$\sin^2 A + \cos^2 A = 1$	$\sin^2 B + \cos^2 B = 1$
$\frac{16}{25} + \cos^2 A = 1$	$\sin^2 B + \frac{25}{169} = 1$
$\cos^2 A = 1 - \frac{16}{25}$	$\sin^2 B = \frac{144}{169}$
$\cos^2 A = \frac{9}{25}$	$\sin B = - \frac{12}{13}$
$\cos A = -\frac{3}{5}$	Now $sin A = \frac{4}{5}$; $cos A = -\frac{3}{5}$
	$\sin B = -\frac{12}{13}$; $\cos B = \frac{5}{13}$
	sin (A – B)
	= sin A.cos B + cos A.sin B
	$= \frac{4}{5} \cdot \frac{5}{13} - \frac{-3}{5} \cdot \frac{-12}{13}$
	$= \frac{20}{\underline{65}} - \frac{36}{\underline{65}}$
	= - 16/65

(04)

Q-3A

- 01. Four digit number (without repetition) is to be formed using digits 1 9 in all possible ways . Find how many of them are
 - a) greater than 4000 b) divisible by 2
 - 4 digit numbers formed = ${}^{9}P_{4}$ = 3024
 - a) numbers greater than 4000

thousand's place can be filled by any of the digits 4 , 5 , , 9 in 6 ways

having done that , remaining three places can be filled by any 3 of the remaining 8 digits in 8 P3 ways

Hence By FUNDAMENTAL PRINICPLE OF MULTIPILCATION,

Total numbers formed = $6 \times {}^{8}P_{3} = 2016$

b) numbers divisible by 2

unit's place can be filled by any of the digits 2, 4, 6, 8 in 4 ways

having done that , remaining three places can be filled by any 3 of the remaining 8 digits in $^{8}\text{P}_{3}$ ways

Hence By fundamental prinicple of multipilcation ,

Total numbers formed = $4 \times {}^{8}P_{3} = 1344$

- 02. Find the number of all arrangement of the letters of the word 'TRIANGLE'
 - a) How many of them begin with T and end with E
 - b) In how many of them do the vowels occupy the odd places
 - c) in how many of them do the vowels occupy second , third and fourth places

SOLUTION

' TRIANGLE '

8 – LETTER WORD

VOWELS : - I, A, E CONSONANTS : - T, R, N, G, L

number of all arrangement of the letters of the word 'TRIANGLE' = $^{8}P_{8}$ = 8!

a) begin with T and end with E

First & the last place can be filled by letters 'T' and 'E' in 1 way Having done that , Remaining 6 places can be filled by remaining 6 letters in ⁶P₆ = 6! Ways By FUNDAMENTAL PRINCIPLE OF MULTIPLICATION ; Total arrangements = 6! = 720

b) vowels occupy the odd places

the 3 vowels will occupy any 3 of the 4 odd places in ⁴P₃ ways Having done that , Remaining 5 places can be filled by remaining 5 consonants in ⁵P₅ = 5! Ways By FUNDAMENTAL PRINCIPLE OF MULTIPLICATION ; Total arrangements = ⁴P₃ .5! = 2880

c) vowels occupy second, third and fourth places

the vowels will occupy second, third and fourth places in ³P₃ = 3! ways Having done that, Remaining 5 places can be filled by remaining 5 consonants in ⁵P₅ = 5! Ways By FUNDAMENTAL PRINCIPLE OF MULTIPLICATION; Total arrangements = 3! .5! = 720

Q-3B

(09)

01. Calculate the quartile deviation for the following data

	CI	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	
	Frequency	6	25	36	20	13	
CI	f cf						
0 - 10	6 6						
10 - 20	25 31	•	— Q1 C	CLASS			
20 - 30	36 67	,					
30 - 40	20 87	′ ◀───	— Q3 C	CLASS			
40 - 50	13 10	0					
$q_1 = \frac{N}{4}$	= 100 = 25	i		q	$3 = \frac{3N}{4}$	$= 3 \frac{100}{4}$	= 75
Q1 =	L ₁ + <u>q₁ - c</u> (L ₂ - f	- L1)		Q	3 = L1	+ q ₃ -c f	(L2 - L1)
=	10 + 25 - 6(20 - 25)	10)			= 30	$0 + \frac{75 - 67}{20}$	<u>′</u> (40 – 30)
=	10 + <u>19(10)</u> 25				= 30	0 + <u>8 (</u> 10) 20	
=	10 + 7.6				= 30) + 4	
=	17.6		Ι		= 34	4	

 $QD = \frac{Q_3 - Q_1}{2} = \frac{34 - 17.6}{2} = \frac{16.4}{2} = 8.2$

02. Calculate the mean deviation from the median . Also find the coefficient of MD

CI	0 - 10	10 – 20	20 – 30	30 - 40	40 - 50
Frequency	5	25	25	18	7

STEP 1 : MEDIAN

CI	f	cf	
0 - 10	5	5	m = N = 80 = 40
10 - 20	25	30	2 2
20 - 30	25	55	
30 - 40	18	73	$M = L1 + m - c (L_2 - L_1)$
40 - 50	7	80	f
			= 20 + 40 - 30 (30 - 20)
			25

$$= 20 + \frac{10(10)}{25} = 25 \qquad M = 24$$

STEP 2 : MEAN DEVIATION FROM MEDIAN

	Х	f	x - M	f x – M			
	5	5	19	95	MD(MEDIAN)	=	$\Sigma f \mid x - M \mid$
	15	25	9	225			Σf
	25	25	1	25			
	35	18	11	198		=	690
_	45	7	21	147			80
		80		690			
						=	8.625

$$COEFF. OF MD = \frac{MD(median)}{M}$$
$$= \frac{8.625}{80}$$
$$= 0.10$$

03. Solve: $\log_{\sqrt{3}} x + \log_{3} x + \log_{\sqrt{27}} x = 11$

SOLUTION

	$\log_{~\sqrt{3}} x$	+ log ₃ x	+ lo	g _{√27} ×	= 1	1
	log x log √3	+ $\frac{\log x}{\log 3}$	+ <u> </u> c	og x og √27	=	11
-	log x log 3 ^{1/2}	+ <u>log x</u> log 3	+ <u>lc</u> lc	og x og 3 ^{3/2}	=	11
	<u>log x</u> <u>1</u> log 3 2	+ <u>log x</u> log 3	$+\frac{-}{3}$ 2	log x log 3	=	11
	2 <u>log x</u> log 3	+ <u>log x</u> log 3	+ <u>2</u> 3	<u>log x</u> log 3	=	11
	$\frac{\log x}{\log 3}$	+ 1 +	$(\frac{2}{3})$		=	11
	$\log x \left(\frac{6}{10} + 10 \right)$	$\frac{3+2}{3}$			=	11
	$\log x$ ($(\frac{1}{3})$			=	11
	log x log 3				=	3
			log >	ĸ	=	3 log 3
			log	ĸ	=	log 3 ³
			х		=	27

04. if $\log \left(\frac{x-y}{4}\right) = \log \sqrt{x} + \log \sqrt{y}$, then show that $(x + y)^2 = 20xy$

SOLUTION :

$$\log\left(\frac{x-y}{4}\right) = \log \sqrt{x} + \log \sqrt{y}$$
$$\log\left(\frac{x-y}{4}\right) = \log \sqrt{x} \cdot \sqrt{y}$$
$$\left(\frac{x-y}{4}\right) = \sqrt{x} \cdot \sqrt{y}$$

Squaring both sides

$$\left(\frac{x-y}{4}\right)^2 = xy$$

$$\frac{x^2 - 2xy + y^2}{16} = xy$$

$$x^2 - 2xy + y^2 = 16xy$$

$$x^2 + y^2 = 18xy$$
Adding '2xy' on both sides
$$x^2 + 2xy + y^2 = 20xy$$

Q4. (A) Attempt ANY TWO OF THE FOLLOWING

х	x – x	$(x - x)^2$
15	-4	16
16	-3	9
18	-1	1
18	-1	1
19	0	0
20	1	1
20	1	1
21	2	4
21	2	4
22	3	9
190		46
x =	<u>∑x</u> n	$= \frac{190}{10} = 19$
σ = 、 `` = 	$\int \frac{\sum (x - \frac{1}{n})}{\frac{46}{10}} \sqrt{4.6}$	<u>x</u>) ²

01	Find SD for the following	data ·	15 16 18	18 19 20	20 21 21 22
01.	This seller the following	uuru .	10,10,10,	10,17,20,	20,21,21,22

Q-4A (06)

taking log on both sides

$$\log \sigma = \frac{1}{2} (\log 4.6)$$
$$= \frac{1}{2} (0.6628)$$
$$= 0.3314$$

$$\sigma$$
 = AL(0.3314)

= 2.145

02. Find Bowley's coefficient of skewness for the following data

11,8,3,10,6,10,1 SOLUTION obs no. 1 2 3 4 5 6 7 6 8 10 10 11 1 3 value STEP 1: = value of the $\frac{N+1}{4}$ th observation Q1 = value of 2nd observation = 3 Q_2 = value of the $\frac{N+1}{2}$ nd observation = 8 = value of 4th observation Q₃ = value of the 3 $\frac{N+1}{4}$ th observation = value of 6th observation = 10 STEP 2: $Q_3 - Q_2 = 2$ $Q_2 - Q_1 = 5$ $SK_B = (Q_3 - Q_2) - (Q_2 - Q_1) = 2 - 5 = -3 = -0.43$ $(Q_3 - Q_2) + (Q_2 - Q_1)$ 2 + 5 7

03. For a moderately skewed distribution Mean = 200 ; median = 198.4 , SD = 16 . Find mode and the Karl Pearson's coefficient of skewness (SKp)

STEP 1 : MODE

		STEP 2 :KARL PERASON COEFF. OF SKEWNESS
Mean – mode	= 3(mean - median)	
200 – mode	= 3(200 - 198.4)	$SKP = \frac{3(Mean - Mealan)}{\sigma}$
200 – mode	= 3(1.6)	$= \frac{3(200 - 198.4)}{14}$
200 – mode	= 4.8	16
mode	= 200 - 4.8	$= \frac{3(1/6)}{\sqrt{6}} = \frac{3}{10} = 0.3$
	= 195.2	

(B) Attempt ANY ONE OF THE FOLLOWING

01. For the following data find the age above which we have the oldest 20% of persons

Age	Below 35	35 – 50	50 – 65	65 – 80	Above 80
Frequency	8	22	25	17	8

SOLUTION

CI	f	cf
Below 35	8	8
35 – 50	22	30
50 - 65	25	55
65 - 80	17	72
above 80	8	80

 $d8 = \frac{8N}{10} = \frac{8(80)}{10} = 64$ $D8 = L1 + \frac{d8 - c}{f} (L2 - L1)$ $= 65 + \frac{64 - 55}{17} (80 - 65)$

$$= 65 + 9(15)$$

17

= 72.94 yrs

02. following is the distribution of age of 500 workers , find the percentage of workers whose age is more than 45 years

Age	20 - 30	30 - 40	40 - 50	50 – 60
No of workers	80	160	180	80

SOLUTION :

CI	f	cf	let age of nth worker be 45 .This worker is in class 40 – 50
20 - 30	80	80	45 = 40 + n - 240 (50 - 40)
30 - 40	160	240	180
40 - 50	180	420 🔶	$5 = \underline{n - 240}$. (10)
50 - 60	80	500	180
			$5 = \frac{n - 240}{18}$
			90 = n – 240 ∴ n = 330
∴ age of	330 th wc	orker is 45	

 \therefore No. of workers whose age is more than 45 years = 500 - 330 = 170

:. Percentage of workers with age more than 45 years = $\frac{170}{500} \times 100 = 34\%$

(03)

Q-4B

01. Find n , ${}^{n}P_{3}$: ${}^{n}P_{6} = 1:210$

SOLUTION

$$\frac{n_{P_3}}{n_{P_6}} = \frac{1}{210}$$

$$\frac{n!}{(n-3)!} = \frac{1}{210}$$

$$\frac{(n-6)!}{(n-6)!} = \frac{1}{210}$$

$$\frac{(n-6)!}{(n-3)!} = \frac{1}{210}$$

$$\frac{(n-6)!}{(n-3)(n-4)(n-5)(n-6)!} = \frac{1}{210}$$

$$\frac{1}{(n-3)(n-4)(n-5)} = \frac{1}{210}$$

$$\frac{2}{3}\frac{105}{5}}$$

$$(n-3)(n-4)(n-5) = 210$$

$$\frac{3}{5}\frac{105}{5}}$$

$$(n-3)(n-4)(n-5) = 7.6.5$$

$$1$$

$$(Descending order)$$

On Comparing

$$n - 3 = 7$$

 $n = 10$

SOLUTION : $A = 4; \mu_1(a) = 1; \mu_2(a) = 4; \mu_3(a) = 10; \mu_4(a) = 46$ $\mu_2 = \mu_2(a) - \mu_1(a)^2$ $= 4 - (1)^2$ = 3 $\mu_3 = \mu_3(a) - 3 \mu_1(a) \cdot \mu_2(a) + 2 \mu_1(a)^3$ NOT REQUIRED $\mu_4 = \mu_4(\alpha) - 4 \mu_1(\alpha) \cdot \mu_3(\alpha) + 6 \mu_2(\alpha) \cdot \mu_1(\alpha)^2 - 3 \mu_1(\alpha)^4$ $= 46 - 4(1)(10) + 6(4)(1)^2 - 3(1)^4$ = 46 - 40 + 24 - 3 = 70 - 43 = 27 $\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{27}{(3)^2} = 3$ $\gamma_2 = \beta_2 - 3 = 3 - 3$ = 0 COMMENT DISTRIBUTION IS MESOKURTIC